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A new computational method is presented for the rapid estimation of polymer miscibility. This algorithm 
(coined FLEXIBLEND) makes use of molecular mechanics calculations on a pair of polymer segments 
in order to estimate heats of mixing. Specific interactions between polymer segments of different types are 
accounted for, as are effects due to local chain flexibility. The many assumptions and approximations of 
such two-segment approaches are discussed, and the new algorithm is used to investigate how miscibility 
predictions are influenced by segment size and other parameters of the model. Predictions of polymer 
miscibility in agreement with experiment are presented for miscible and immiscible blends, and detailed 
error analysis indicates the statistical significance of the FLEXIBLEND results. Balancing the recognized 
limitations with the computational speed of the method, it is concluded that the new algorithm should be 
useful in initial screening of potential blend candidates, and in giving a rough guide as to how changes in 
chemical structure might alter phase behaviour. The method also provides useful insight as to why two 
polymers mix or phase-separate. Finally, the FLEXIBLEND results are compared with those of a more 
rigorous, but computationally more expensive, amorphous cell method for calculating heats of mixing. 

(Keywords: polymer miscibility; computer modelling; molecular mechanics) 

INTRODUCTION 

Polymer chemists and theoreticians alike have devoted 
much attention to the subject of phase separation of 
polymer solutions and blends. In the 1940s, Scott ~ and 
Tompa 2 applied the classical lattice model of Flory a and 
Huggins 4 to polymer mixtures, an approach that has now 
been further developed and is widely used 5. Equation- 
of-state theories to describe lower critical solution 
temperature behaviour have also been presented 6, and 
Kleintjens and K6nigsveld have used a mean-field 
lattice-gas model for polymer f luids 7. Whilst these 
theories provide very useful means for calculating 
polymer compatibility, they require data that must be 
obtained from experiment, such as the Flory-Huggins X 
parameter. By contrast, the recently developed polymer 
reference interaction site model holds great promise for 
first-principles prediction of the phase behaviour of 
polymer blends and solutions a'9. 

Alongside the theoretically rigorous approaches 
mentioned above, polymer scientists have traditionally 
used a much simpler 'rule-of-thumb' technique for 
estimating miscibility. The method is based upon 
comparison of Hildebrand solubility parameters for the 
polymers of interest. Solubility parameters, which are 
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related to cohesive energy density, may be obtained 
experimentally or using group additive methods 1°. If, for 
example, polymer A has a solubility parameter of similar 
magnitude to that of polymer B, this indicates that the 
strength of the interactions between segments of polymer 
A is similar to that between segments of polymer B. In 
the absence of specific interactions (such as hydrogen- 
bond formation) between A segments and B segments, 
this clearly makes mixing of segments energetically more 
favourable than in the case where the A-A interactions 
are much stronger than the B-B interactions. Thus, 
comparison of solubility parameters can be used as an 
approximate miscibility predictor. 

Recently, Jacobson et  al. have described how molecular 
modelling studies can give a rapid estimate of whether 
two polymers will form a miscible blend using a method 
that can account for specific interactions between 
polymer segments 11'12. The theoretical foundation of 
their method relies upon the premise that miscibility is 
determined by thermodynamic factors alone, and further- 
more that these thermodynamic factors are dominated 
by the energetics of local interactions between segments 
of the polymer chain L3'4'~3. In these original investiga- 
tions, rigid high-performance polymers were studied, and 
effects due to local chain flexibility were neglected ~L~2. 
This two-segment approach to miscibility prediction is 
modified and extended here so that flexible polymers may 
also be studied. 
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THEORETICAL BASIS OF THE TWO-SEGMENT 
APPROACH 

A necessary condition for the miscibility of a mixture of 
two polymers is a negative free energy of mixing: 

AHmi x - TASmi x < 0 (1) 

It has been proposed that entropic contributions to the 
free energy of mixing are small 14, so that to a first 
approximation we may ignore the TASmi x term in the 
above equation. 

In the method of Jacobson et al.~ 1.12, computer models 
of a pair of segments of polymer chain (each containing 
about 200 atoms) are built and then 'docked' together 
using molecular mechanics techniques 15. The net inter- 
action energy of mixing (AEmix) is computed as a good 
approximation to AHmix, volume changes upon mixing 
being ignored. For example, in a study of the miscibility 
of polymers A and B, the interaction energies of AA, BB 
and AB pairs must be calculated (EAA, EBB and EAB 
respectively). These interaction energies can be defined 
as the decrease in energy of the segment pair if all 
non-bonded interactions between the two segments are 
turned off. A negative interaction energy therefore 
denotes a favourable interaction between the two 
segments. Miscibility of the A/B blend is indicated by 
the relation: 

AEmi x = EAB -- ½(EAA + EBB ) < 0 (2) 

which determines that it is energetically favourable to 
make two AB pairs from an AA pair and a BB pair. 

There are several potential problems with the theoretical 
basis of such two-segment approaches to estimating 
miscibility. For example, there are non-combinatorial 
contributions to the entropy of mixing that may not be 
small, even for long polymer chains. Furthermore, 
packing between two polymer segments in a vacuum will 
only be a very approximate model for the way that 
polymer chains pack together in a real blend; this is 
perhaps particularly true for flexible polymers. The effects 
of temperature and concentration are also ignored. 
However, the two-segment approach has been found 
useful as a method for initial screening of likely miscible 
combinations of polymers T M ,  and some have even 
attempted to predict phase diagrams using it 16. Given 
that the method is computationally fast, we aim to 
show that the two-segment model can be used in the 
manner of a 'rule-of-thumb' technique, somewhat more 
sophisticated than the solubility-parameter approach in 
that specific interactions between polymer segments can 
be accounted for in the EAB term. 

Aside from the potential problems with the theoretical 
basis, there are also practical problems with the 
two-segment approach. Calculation of the interaction 
energy of a pair of segments is complicated by the very 
large number of different possible geometries of the 
interacting pair. Jacobson et al. docked the two segments 
together using the fixed valence geometry molecular- 
mechanics technique 17, in which the conformation of 
each segment is held rigid during the docking procedure. 
This was shown to work well for polymers composed of 
rigid units T M ,  but is unlikely to be appropriate for 
determining interaction energies between flexible segments. 
The interaction energy between two segments of flexible 
polymers may be significantly decreased as the molecular 
geometries of the two segments change to enable the most 

favourable interaction; the chain segments can fold 
around each other to lower their interaction energy. We 
illustrate below that in such cases it is important to 
sample statistically the energetically accessible conforma- 
tions of the two polymer segments, as well as their 
different relative orientations and positions. 

THE 'FLEXIBLEND' ALGORITHM 

A new methodology for estimating miscibility of flexible 
polymers using the two-segment approach is outlined 
below, and this procedure will be described hereafter as 
the FLEXIBLEND algorithm: 

(1) A computer model of a short segment of polymer 
A is built, and a sample of energetically accessible 
conformations is generated using high-temperature 
molecular dynamics 18 or rotational-isomeric-state (RIS) 
Monte Carlo sampling 19. These conformations are 
stored in an archive. 

(2) Two A segments, with conformations randomly 
selected from the archive, are placed with their centres 
of mass coincident. One of the two segments is first 
randomly oriented in space, and then moved a fixed 
distance (RcM) in a random direction. If the inter- 
molecular energy of the resulting structure is below a 
specified threshold value (Emax) it is stored for later 
refinement. If the intermolecular energy exceeds E . . . .  the 
structure is discarded. This procedure is repeated until a 
specified number of starting structures is obtained, each 
containing one pair of segments. 

(3) Each starting structure is relaxed by molecular- 
mechanics energy minimization, leading to a set of refined 
structures. The molecular geometries change during the 
energy minimization, allowing the two segments in the 
structure to fold around each other. 

(4) After refinement, the interaction energy (i.e. 
non-bond intermolecular energy) for each refined 
structure is determined from analysis of the energy 
components 18. Normalization yields an energy density, 
and EAA is set equal to the average of these interaction 
energy densities over the full set of refined structures. 

(5) Steps (1) to (4) are repeated using segments of 
polymer B of similar size to the A segments, and then 
for a pair consisting of one A segment and one B segment. 
Finally, the resulting interaction energy densities, EAA, 
EBB and EAB, are substituted in equation (2) to estimate 
whether or not the A/B mixture will be miscible. 

The interaction energy initially computed in step (4) 
must be normalized because its value depends upon the 
number of atoms--it is an energy per mole of structures. 
Normalization is achieved through division of the 
interaction energy by the volume of a mole of structures, 
giving an interaction energy density conveniently expressed 
in units of cal cm- 3. The volume of a mole of structures 
is calculated by dividing the molar mass of the pair of 
molecules in the structure by a density. For an AA pair, 
we use the density of the pure A polymer, whilst for an 
AB pair we take the density with inverse equal to the 
average of the inverse densities of the pure A and pure B 
polymers. 

The FLEXIBLEND algorithm as outlined above 
leaves several parameters yet to be defined. Specifically 
these are the size of the polymer segments to use, the 
values of Rc~ and E . . . .  and the details of the 
molecular-mechanics energy refinement procedure. The 
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number of structures that must be generated in step (2) 
is determined by the requirement for statistical significance 
of the results, and careful error analysis is therefore a 
priority. All of these parameters will be considered in 
detail later. 

THE AMORPHOUS CELL APPROACH 

A second, more rigorous, method is also used below in 
the study of the poly(ethylene oxide)/polypropylene 
blend. This involves setting up computer models of the 
amorphous bulk polymers, A and B, and for the proposed 
A/B blend, using 'amorphous celr 2° techniques. The 
cohesive energy of such an amorphous cell is defined as 
the increase in energy per mole of a material if all the 
intermolecular forces are eliminated. Note the difference 
in sign convention compared to the interaction energies 
defined above; a large positive cohesive energy indicates 
strongly attractive intermolecular interactions. The 
cohesive energy density (EcED, cohesive energy per unit 
volume) is related to Hildebrand's solubility parameter, 
6, through the equation: 

C~ = (EcED) 1/2 (3) 

An estimate of the heat of mixing can be obtained in 
the following way. Several amorphous cells of the pure 
A polymer are first constructed and thoroughly equilbrated 
using molecular dynamics and molecular mechanics 
methods. The cohesive energy density of each cell is then 
calculated, and an average taken over all the cells. The 
same procedure is carried out for cells of the pure B 
polymer, and for cells containing a mixture of A and B 
chains. The heat of mixing can be estimated from the net 
change in cohesive energy density (using the equivalent 
of equation (2)). In this case, a positive value indicates 
exothermic mixing. 

FORCEFIELD 

Both the FLEXIBLEND algorithm and the amorphous 
cell approach require the use of a forcefield to describe 
how the energy changes as a function of intra- and 
intermolecular geometry. In this work, the 'cvff' force- 
field is used 18. In addition to describing how the energy 
of a molecule varies with bond stretching, angle bending 
and other internal coordinates, the forcefield determines 
the interactions between two molecules as a sum of 
atom-pair potentials describing van der Waals and 
Coulombic interactions: 

Eint = 2 Eij (4) 
ij 

where i is summed over atoms in the first molecule, and 
j over atoms in the second molecule. In the cvff forcefield, 
Eii takes the form 

Aij Bq qiqj 
Ei~=rl 7 r 61- erij (5) 

where A u and B~j are determined from the forcefield 
parameters for atoms i and j; rq is the distance between 
the two atoms; q~ is the partial charge on atom i, assigned 
using a simple method of bond increments I a; and e is the 
dielectric constant. For all calculations presented here 
we use a relative permittivity of 1. 

PARAMETERS OF THE 'FLEXIBLEND' 
ALGORITHM 

As mentioned previously, the FLEXIBLEND algorithm 
has several adjustable parameters. Its usefulness therefore 
depends upon the sensitivity of its predictions to the 
values chosen for these parameters; clearly the algorithm 
will be useless if we can predict on the one hand miscibility 
and on the other immiscibility by changing the 
parameters within sensible bounds. The purpose of this 
section is to consider what these sensible bounds might 
be. Only general considerations are presented at this 
stage. More detailed analysis of the sensitivity of the 
FLEXIBLEND predictions to parameter changes is 
given later for specific polymer blends. 

Effect of polymer segment length 
We suggest that the length, L, of the polymer segment 

must satisfy the criterion L >> RcM, so that the calculated 
interaction energies between two segments are dominated 
by backbone and side-chain atoms and not chain ends. 
However, L should not be too large. Consider two long 
chain segments randomly oriented with respect to each 
other; even when the centres of mass of the two chains 
are very close, there will be significant regions of each 
segment that are so far from the other segment that they 
do not feel its influence (unless the chains happen to be 
lined up roughly parallel to each other). The molecular- 
mechanics energy minimization alleviates this problem 
to a certain extent by folding the chains around each 
other, but this is inefficient for very long segments. 

It is important that the A and B segments are of 
similar size, otherwise the EAB energy may be estimated 
incorrectly. The reason is that if, for example, the A 
segment is much longer than the B segment, then the AB 
pair will contain large regions of the A segment that 
extend into a vacuum. These regions increase the volume 
of the pair, but contribute little to its cohesive energy. 
We shall return to this point later. 

Effect of initial polymer seoment conformation 
Studies on pairs of polyethylene (PE) segments 

containing 11 backbone bonds were carried out in order 
to assess the effect of initial segment conformation upon 
the calculated interaction energy. Some 150 starting 
structures were generated, each containing a pair of 
polyethylene chain segments in the all-trans conformation. 
Use of the parameter values Rcu = 1.0 ,~ and Emax = 108 
kcal tool-1 resulted in an acceptance ratio of 0.75 (i.e. 
200 trial structures were built in order to generate 150 
acceptable structures). The value of Emax was chosen to 
be quite large because there are likely to be significant 
atom overlaps in any starting structure generated. The 
molecular mechanics energy minimization very quickly 
puts each structure into a 'reasonable' conformation, but 
by using Em~x we avoid submitting structures with very 
bad atom overlaps to this refinement process. Energy 
refinement of each starting structure was carried out until 
the maximum derivative of energy with respect to any 
atomic Cartesian coordinate dropped below 1 kcal 
mol-1 A-1. The average interaction energy from the 150 
refined structures was then calculated as described above. 

This procedure was repeated starting with a pair of 
polyethylene segments each in the 3/1 helical conformation, 
and then in each of five other conformations generated 
by RIS Monte Carlo sampling x9,2~ at a temperature of 
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Table 1 The effect of initial segment conformation on the calculated 
interaction energy for polyethylene structures 

Initial Interaction energy Standard error on 
conformation density (cal cm-  3) the mean (cal cm- 3) 

All-trans - 10.91 O. 15 
3/1 helix - 12.37 0.10 
Monte Carlo 1 - 15.83 0.23 
Monte Carlo 2 - 13.55 0.05 
Monte Carlo 3 - 13.45 0.08 
Monte Carlo 4 -13.50 0.08 
Monte Carlo 5 - 15.00 0.08 

300 K. The resulting interaction energies are summarized 
in Table 1. 

The standard error on the mean of the interaction 
energy density for each set of 150 structures is found to 
depend somewhat upon starting conformation. It can be 
seen that the variation in the average interaction energies 
reported in column 2 of Table 1 is much greater than the 
estimated statistical error in each average interaction 
energy. We therefore conclude that it is necessary to 
generate starting structures using a representative set of 
polymer segment conformations rather than a single 
conformation. In the FLEXIBLEND algorithm, these 
sample conformations are generated in step (1) by 
high-temperature molecular dynamics or RIS Monte 
Carlo sampling. 

It is worthwhile to consider exactly what we mean by 
a 'representative' set of polymer segment conformations. 
Ideally, the conformations should be representative of 
those found in the homopolymer melt. Such conformations 
might be selected from a suitable ensemble using a 
Boltzmann weighting factor appropriate for the tempera- 
ture of interest. Whilst a sufficiently large ensemble of 
conformations generated using an RIS approach will 
have the correct configurational statistics, the segment 
conformations themselves will not be representative of 
those found in the melt (for example, RIS chains can 
self-intersect). Furthermore, the molecular mechanics 
refinement process itself alters the segment conformations, 
and thereby also the configurational statistics. We must 
therefore note that the FLEXIBLEND algorithm 
approximates that heats of mixing are not very sensitive 
to the fine details of polymer chain conformation at the 
scale of short segments. Later we show that statistically 
significant, reproducible predictions can be made from 
as few as 200 structures (certainly not enough to ensure 
accurate configurational statistics), indicating that this 
approximation is quite reasonable for our purposes. 

Effect of molecular mechanics refinement strategy 
Once the starting structures have been generated, they 

are refined by molecular mechanics energy minimization. 
Complete energy minimization would alter the conforma- 
tions and relative positions and orientations of the two 
molecules until they lie at a local minimum in the 
potential-energy surface described by the forcefield tg. 
(The polymer chains in a real blend have thermal kinetic 
energy, so that a minimum in the potential-energy 
surface may not be an appropriate place to measure the 
segment-segment interaction energy. However, we will 
show that the results are not sensitive to the details of 
the refinement strategy.) In practice, complete energy 
minimization is prohibitively time-consuming for use in 

the FLEXIBLEND algorithm. Instead, we carry out 
energy minimization until the maximum derivative of 
total energy with respect to any of the atomic coordinates 
falls below a predefined minimum value. The total energy 
contains contributions from internal degrees of freedom 
(e.g. bond stretching, valence angle bending, etc.) in 
addition to the intermolecular non-bond (interaction) 
energy. We therefore seek a maximum derivative criterion 
for the total energy which balances the requirement for 
a quick result with the need to ensure that the non-bond 
interaction energy comes within reasonable range of 
the limiting value it would obtain upon complete 
convergence. 

In order to estimate a suitable maximum derivative 
criterion, the FLEXIBLEND algorithm was used to 
generate 200 polyethylene starting structures, each 
containing a pair of l 1-backbone-bond polyethylene 
segments. Initial segment conformations were randomly 
selected from an ensemble generated by RIS Monte Carlo 
sampling at 300 K. The 200 initial structures were then 
refined using various maximum derivative criteria. 
Figure 1 plots the average interaction energy against the 
inverse of the maximum derivative criterion for the set 
of 200 PE structures. When the maximum derivtive of 
total energy falls below about 1 kcal mol-1 /~-1 the 
interaction energy converges close to its limiting value, 
and we therefore suggest this as a working value for the 
maximum derivative criterion in the refinement procedure 
of the FLEXIBLEND algorithm. The sensitivity of 
FLEXIBLEND predictions to the maximum derivative 
criterion is further investigated below. 

Effects of  Rct a and E ~  
As we might intuitively expect, it turns out that an 

increase in RCM generally leads to a decrease in the 
magnitude of the resulting interaction energy. Small 

EAA 
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I I I I I I I I I I 

I I I 1 I I I I I I 

0 2 4 6 8 I0 

(Max. derivative/kcal rno1-1/~q)-I 
Figure 1 Calculated average interaction energy density for 200 
polyethylene segment pairs plotted as a function of the inverse of the 
maximum derivative of total energy with respect to molecular 
coordinates used in the energy-minimization procedure 
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values of Rcu give rise to starting structures in which the 
two segments are initially very close, so that the 
molecular mechanics refinement procedure pushes them 
apart. The segments start from a point on a steep 
repulsive wall of the potential-energy surface, and settle 
down into a nearby local energy minimum. If larger 
values of RcM are used, the segments will start further 
apart, and will therefore end up in local energy minima 
in which the two molecules are more widely separated. 
The interaction energy after refinement is correspondingly 
smaller in magnitude (less negative). 

In the bulk polymer, the chain segments will experience 
compressive forces from surrounding chains, which are 
absent in the simple FLEXIBLEND model. We therefore 
aim to generate refined structures in which the segments 
are close together, and consequently propose the use of 
a small value of RcM (,-, 1/10. A large value of Ema x can 
be chosen to give a reasonable acceptance ratio 
(something above 0.4). A value of about 10 s kcal mol-1 
is normally sufficient to discard structures that will 
cause problems for the molecular mechanics energy 
minimization algorithms. The sensitivity of FLEXIBLEND 
predictions to the value of RcM is investigated below. 

'FLEXIBLEND' PREDICTIONS FOR MISCIBLE 
AND IMMISCIBLE BLENDS 

In this section we investigate two polymer blend systems 
in detail, one immiscible, the other miscible, in order to 
test the sensitivity of the FLEXIBLEND predictions to 
the parameters of the model. For an immiscible system 
we choose poly(ethylene oxide)/polypropylene (PEO/PP); 
PEO coatings on the metal surfaces of injection 
moulding machines enable objects made from PP to 
separate cleanly from the equipment. For a miscible 
blend we choose poly(ethylene oxide)/poly(acrylic acid) 
(PEO/PAA) 22. Densities for the PEO and PP homo- 
polymers are taken as 1.12 and 0.852 g cm -3 respectively 23, 
and the density of pure PAA is estimated using 
structure-property relationships 24 to be about 1.35 
g cm -3. 

Interaction energy densities and AEml x for various segment 
sizes 

We first constructed computer models of small 
segments of the polymers, PEON, isotatic PPN and 
isotatic PAA N, where N = 2, 3, 4, 5, 6, 8. Ensembles of 
100 conformations of each PPN segment were generated 
from RIS Monte Carlo sampling at 300 K 25, followed 
by energy minimization of each conformation until the 
maximum derivative of total energy with respect to 
atomic coordinates fell below 1 kcal mol-1 A-1. The 
same procedure was used to generate an archive of 100 
PEON conformations 26. Since the appropriate RIS 
statistical weights are not available, high-temperature 
molecular dynamics followed by energy minimization to 
1 kcal mol- ' A- 1 was used to generate 100 conformations 
of each PAA N segment. 

The FLEXIBLEND algorithm was then used to 
generate and refine 200 starting structures of the segment 
pairs, PEON/PEON, PPN/PPN and PAAN/PAA N, and to 
calculate the corresponding average EAA interaction 
energy densities. Parameters for the FLEXIBLEND 
algorithm were chosen as RcM= 1.0 A, Emax= 10 a kcal 
mol-1, and energy refinement to 1 kcal tool-1 A-1 for 
the reasons discussed above. Figure 2 shows how the 

average interaction energy density changes for each 
polymer as a function of segment size, N. The error bars 
on the graphs indicate the standard error on the mean 
of the 200 structures used for each calculation (error bars 
are not shown for PPN because they are smaller than the 
size of the graph symbol). We have already noted that 
the interaction energy density must tend towards zero 
for a pair of very long segments, where interaction can 
only take place over a small region of the total segment 
volume. This effect will be particularly noticeable for long, 
thin segments, such as PEO N-mers that have three 
backbone bonds per monomer unit and no side groups. 
Figure 2 shows a clear tendency for the magnitude of the 
interaction energy density to be reduced in 5-mers and 
longer segments of PEO, suggesting that we should use 
short PEO segments in FLEXIBLEND calculations. 
Bearing in mind the need to minimize end effects, 3-mers 
or 4-mers appear to be the most appropriate choice. On 
the other hand, PAA and PP N-mers are shorter and 
fatter than PEO N-mers, having side groups and only 
two backbone bonds per monomer unit. Figure 2 shows 
the interaction energy density becoming more negative 
with increasing N for these polymers (up to N=8), 
although the trend must eventually reverse as N becomes 
very large. 

Figure 3 shows the calculated interaction energies of 
PAAN/PEOM segment pairs for various values of N and 
M. The FLEXIBLEND algorithm was again used to 
generate 200 segment pairs for each calculation using the 
parameters RcM=I.0A, Emax=108 kcal mol - t ,  and 
energy refinement to 1 kcal mol- ~ A-1. As we have 
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Figure 2 Variation of the average interaction energy density between 
pairs of like segments of the polymers PP, PEO and PAA as a function 
of segment size. Error bars indicate standard errors on the mean of 
the 200 interaction energy values used to obtain each average 

POLYMER Volume 35 Number 15 1994 3255 



Prediction of polymer miscibility." A. R. Tiller and B. Gorella 

EAB 

l I | I 

-35" 

V 

"~ - 4 0  

- 4 5  

[ 

l 

I I I  | 

N (PEO) 

4 

I I I 

2 3 4 5 

N (PAA) 

Figure 3 Dependence of the average interaction energy density for 
PEO/PAA segment pairs upon relative size of the two segments. Each 
energy density is the average value from 200 structures, and error bars 
denote the standard error on the mean 

already pointed out, the interaction energy density must 
tend towards 0 when the segments are of greatly differing 
sizes. Correspondingly, we expect to find a minimum 
value when the two segments are roughly the same size, 
and the results in Fi#ure 3 are in accordance with this 
expectation. Minima in the interaction energy density 
could conceivably lie at PAA2/PEO 3, PAA3/PEO4 and 
PAA4/PEO 5, although the error bars in Figure 3 are too 
large for a definite prediction. An N-mer of PAA is 
somewhat larger than an N-mer of PEO due to its bulky 
side groups. On the other hand, an N-mer of PP is of 
similar size to an N-mer of PEO, the greater length of 
the PEO N-mer being compensated by the methyl side 
group on the PP monomer. 

Table 2 shows predicted values of AEmi~ for PAAN/PEO M 
and PPN/PEOM using different segment sizes, N and M 
being chosen so that the segments in the mixed structure 
are of similar size. Each AEmi x result (involving 
calculations of EANAN, EaMaM and EANBM) takes between 1 
and 4 h on a Silicon Graphics R4000 Indigo workstation, 
depending upon the size of the segments. The magnitude 
of the predicted AEmi ~ in Table 2 depends quite strongly 
upon segment size. However, the results are consistently 
negative for PAA/PEO, and consistently positive for 
PP/PEO, in accordance with the experimentally observed 
compatibility of the respective blends. 

It is interesting to consider which is the best value of 
AEm~ in Table 2 for each blend. We have already noted 
that the EAA interaction energy density for PEO may not 
be reliable for N>4; its magnitude will be too small, 

leading to values of AEmi x that are more negative than 
they should be. On the other hand, very small segments 
of PAA and PP may also have unreliable EAA values 
owing to large end effects. On this basis, we choose the 
PP4/PEO4 and PAA3/PEO4 cases for further investigation 
below, even though these cases do not give the most 
conclusive predictions in Table 2. 

Figure 4 analyses the PP4/PEO4 calculation in detail, 
showing the calculated interaction energy densities for 
each set of 200 structures of PEOJPEO4, PPJPP4  and 
PP4/PEO4. Quite large fluctuations are observed in the 
interaction energies, especially for the PEO4/PEO4 
structures, although the standard error on the mean of 
each set of 200 structures is small enough that a 
statistically significant prediction of AEmi x can be made. 
Figure 4 also gives some insight into the reasons why the 
two polymers do not mix: although the average 
interaction energy of the PEO/PP segment pair is more 
favourable than that of the PP/PP pair (so that the PP 
segment prefers to be near to a PEO segment), the mixture 
is predicted to be immiscible because a PEO segment 
prefers to be near another PEO segment rather than a 
PP segment, and this latter consideration is dominant. 
Typical refined segment pair structures are also illustrated 
in Fi#ure 4, showing the way that the two segments fold 
around each other. 

Dependence of predicted AEmix on FLEXIBLEND 
parameters 

Before deciding whether the FLEXIBLEND algorithm 
can make useful predictions, it is necessary to determine 
how the magnitude of AEmi x changes with Rc~ and the 
maximum derivative criterion in the energy refinement 
procedure. (Emax can be considered dependent upon RcM, 
its value being chosen so as to give a reasonable 
acceptance ratio.) Figure 5 shows how the values of AEmi x 
are influenced by the maximum derivative criterion for 
the PPa/PEO4 and PAA3/PEO 4 cases. The result for 
PP4/PEO'4 becomes slightly more conclusive with a 
decrease in the maximum derivative limit, although this 
is, of course, achieved at the cost of increased computer 
time spent in the refinement process. The value of AEmi x 
for the PAA3/PEO 4 case appears to be quite insensitive 
to the maximum derivative criterion. 

Figure 6 shows the variation of AEm~ x with RcM for 
PP4/PEO4 and PAAa/PEO4. Again, the results are not 
very sensitive to the value chosen for the FLEXIBLEND 
parameter, although the most conclusive predictions are 
made with the smallest values of Rcu. There is a tendency 
for the magnitude of AEm~ to decrease with an increase 
in RcM (for very large values of Rcu we would expect to 
find EAA = EaB = E A B -  AEmi x = 0 a s  the segments are too 
far apart to interact at all). 

Table 2 Predicted AEml x for PEO/PP  and PEO/PAA blends 

AEm, x Standard error on 
Structure (cal cm-  3) the mean (cal cm-  3) 

PP3/PEOa + 5.55 __+ 0.67 
P P J P E O  4 + 3.55 + 0.66 
PPs /PEO s + 1.64 _+ 0.65 

PAA2/PEO 3 - 2.01 + 1.97 
PAA3/PEO,~ - 3.63 _ 1.59 
PAA4/PEO 3 - 7.37 _ 1.59 
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Figure 4 Calculated interaction energy densities for 200 PEO4/PEO 4 segment pairs, 200 
PP4/PP4 segment pairs and 200 P P J P E O 4  segment pairs generated using the FLEXIBLEND 
algorithm. Averages of each set of 200 data points are shown as horizontal lines on the graphs. 
Typical refined structures are shown (heavy atoms only) to the right of the graphs, illustrating 
the way that the segments fold around each other 

AMORPHOUS CELL CALCULATIONS ON 
THE POLY(ETHYLENE 
OXIDE)/POLYPROPYLENE BLEND 

Amorphous cell methods can be used to generate an 
atomistic model of a bulk amorphous polymer 2°. The 
model is periodic, so that if a polymer chain in the central 
cell passes out through one of the cell faces, an exact 
copy (or image chain) enters the cell through the opposite 
face. Figure 7 shows an amorphous cell of PEO 
surrounded by eight identical image cells, giving an 
impression of the way an infinite, bulk model is 
constructed from an individual cell. 

Ten different amorphous cells each of PEO (at a density 
of 1.12 g cm-3), isotactic PP (density 0.852 g cm-3), 
and a PEO/isotactic PP mixture (density 0.968 g cm- a) 
were built using commercial software x9, with each cell 
containing 1012 atoms. Each cell was constructed from 
two parent chains of 506 atoms. Thus the PEO cell 
contains two 72-mers, the PP cell contains two isotactic 
56-mers, and the mixed cell contains one 72-mer of PEO 
and one isotactic 56-mer of PP. The resulting mass 
fraction of PEO in the mixed cell is 0.574. Each cell was 
equilibrated for 10ps of molecular dynamics at a 

temperature of 298 K, and then cohesive energy densities 
were calculated using molecular mechanics ~9. 

Table 3 gives the calculated average cohesive energy 
densities for the three sets of cells. As expected, the 
magnitude of the cohesive energy density for the bulk 
model is much larger than that for a pair of isolated 
chains (compare Figure 4 and the values in column 2 of 
Table 3). The calculated net change in cohesive energy 
density upon mixing is unfavourable at -5.3 cal cm-a. 
The amorphous cell calculation therefore suggests that 
a mixture of the PEO (mass fraction 0.574) with isotactic 
PP (mass fraction 0.426) will be immiscible, in agreement 
with the FLEXIBLEND result and with experimental 
observation. Again, the amorphous cell calculations show 
the dominant factor to be the high cohesive energy of 
the pure PEO polymer. 

DISCUSSION 

The most important consideration in using the two- 
segment approach for miscibility prediction appears to 
be segment size. In particular, if the sizes and shapes of 
the monomer units of polymers A and B are very different, 
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Table 3 Average cohesive energy densities of amorphous cells 
containing PEO, isotatic PP and a mixture of PEO and isotactic PP 

Average cohesive energy 
Cell composition density (cal cm-  3) 

PP 50.5 
PEO 96.3 
PEO/PP mixture 68.1 

Table 4 Solubility parameters for PEO, PP and PAA 

Polymer 6 (cal cm-3) t/z Ref. 

PP ~ 9.2 Experimental 23 
PEO ~ 9.9 +__ 1 Experimental 23 

~ 9.4 Structure-property relationships 24 
PAA ~ 1 2 . 6  Structure-property relationships 24 

predictions may depend strongly upon the size of 
segments for which the calculations are performed. 

However, with careful attention to the segment size, 
molecular mechanics calculations on short segments of 
polymer chains using the FLEXIBLEND algorithm 
consistently predict that PEO and PP are immiscible, 
whilst PEO and PAA are miscible. These predictions 
cannot be made on the basis of comparing solubility 
parameters, as the values in Table 4 readily show. 
Furthermore, the two-segment approach gives some 
insight into the reasons why two polymers are miscible 
or immiscible. The method is quick, typically requiring 
only a couple of CPU hours for each polymer blend 
studied, and is based upon the premise that miscibility 
is largely determined by the energetics of local interactions 
between segments of the polymer chain. Effects of 
temperature and concentration are ignored, as are 
volume changes upon mixing. 

The spatial correlations between chain segments in the 
set of refined structures produced by the FLEXIBLEND 
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model  are somewhat  dependent  upon  the parameters  
chosen to generate the starting structures. By contrast ,  
the amorphous  cell me thod  creates a realistic three- 
dimensional  model  in which the spatial correlations 
between chain segments can be accurately determined for 
the bulk, amorphous  polymer  (within the limitations of  
the forcefield). This, more  rigorous, method  requires 
greater comput ing resources; calculations on the P E O / P P  
blend took  a total of  about  three C P U  days on a Silicon 
Graphics  4D/35  workstat ion.  However,  using the 
amorphous  cell approach,  it is, at least in principle, 
possible to investigate the effects of  concentra t ion by 
varying the volume fractions of  the two components  in 
the mixed cell. 

Predictions of  cohesive energy density and solubility 
parameter  using the amorphous  cell technique are likely 
to give a more  reliable guide to miscibility than are 
calculations using the F L E X I B L E N D  algorithm. How-  
ever, the speed of  the F L E X I B L E N D  method  suggests 
its usefulness for initial screening of  potentially miscible 
combinat ions  of  polymers  for a given application, 
and for unders tanding changes in phase behaviour  
resulting from modificat ions in chemical structure. More  
reliable calculations using the amorphous  cell method  
might then be carried out  on promising combinations.  
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